Exercise 8

Given $f(x)=\frac{1}{x-4}$ and $g(x)=\frac{1}{6-x}$, find $f+g, f-g, f g$, and $\frac{f}{g}$. Determine the domain for each function in interval notation.

Solution

Determine each of the functions.

$$
\begin{aligned}
f+g & =f(x)+g(x)=\frac{1}{x-4}+\frac{1}{6-x}=\frac{6-x}{(x-4)(6-x)}+\frac{x-4}{(x-4)(6-x)}=\frac{6-x+x-4}{(x-4)(6-x)}=\frac{2}{(x-4)(6-x)} \\
f-g & =f(x)-g(x)=\frac{1}{x-4}-\frac{1}{6-x}=\frac{6-x}{(x-4)(6-x)}-\frac{x-4}{(x-4)(6-x)}=\frac{6-x-x+4}{(x-4)(6-x)}=\frac{10-2 x}{(x-4)(6-x)} \\
f g & =f(x) g(x)=\left(\frac{1}{x-4}\right)\left(\frac{1}{6-x}\right)=\frac{1}{(x-4)(6-x)} \\
\frac{f}{g} & =\frac{f(x)}{g(x)}=\frac{\frac{1}{x-4}}{\frac{1}{6-x}}=\left(\frac{1}{x-4}\right)\left(\frac{6-x}{1}\right)=\frac{6-x}{x-4}
\end{aligned}
$$

In each formula $x-4$ and $6-x$ appear in a denominator at some point, and since you can't divide by zero, $x-4 \neq 0$ and $6-x \neq 0$. Solve for $x: x \neq 4$ and $x \neq 6$. Therefore, the domain of $f+g, f-g, f g$, and f / g is $(-\infty, 4) \cup(4,6) \cup(6, \infty)$.

